Q.P.	Code:	16EE215	
------	-------	---------	--

Reg.	No:	
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR	
	(AUTONOMOUS)	
	B.Tech II Year II Semester Supplementary Examinations Dec 2019	
	ELECTRICAL MACHINES - II	
Time	(Electrical & Electronics Engineering) 3 hours Max. Marks: 60	
Time.	(Answer all Five Units $5 \times 12 = 60$ Marks)	
1	a Derive an e. m. f. equation of a transformer	8M
1	b A 10KVA, 2200/400V transformer has R1=5 Ω , X1=12 Ω , R2=0.2 Ω and X2=0.48	4M
	Ω . Determine the equivalent impedance of the transformer referred to	
	(i) Primary side (ii) Secondary side.	
	OR	
2	a Write short notes on Losses, Efficiency and Regulation	7M
	b Explain the effect of variations of frequency and supply voltage on iron losses.	5M
	UNIT-II	
3	a A 2 kVA, 115/230 V, 50HZ transformer gave the following test results:	6M
	Short-circuit test: 13 V, 8.7 A, 100 W	
	Open circuit test : 115 V, 1.1 A, 50 W	
	Calculate the voltage regulation and efficiency at full load at 0.8 p.f lagging.	(M
	b With neat diagram explain the procedure for conducting Sumpner's test. OR	6M
4	a Describe the Parallel operation of transformers with equal voltage ratios.	6M
	b Compare a Two-winding transformer with Auto transformer in detail.	6M
	UNIT-III	
5	a Draw and explain Y- Y & Δ - Δ Connection diagram of three-phase transformer.	7M
	b With neat diagram explain about the Scot connection of a transformer.	5M
	OR	
6	a Explain the constructional details of cage and wound rotor induction machines.	7M
	b A Three phase induction motor is wound for 4 poles and is supplied from 50 HZ	5M
	System. Calculate (i) synchronous speed (ii) speed of the motor when slip is 4% and	
	(iii) Rotor current frequency when the motor runs at 600rpm.	
-	UNIT-IV	73 4
7	a A 6-pole, 50Hz, 3-phase induction motor running on full load develops a useful torque of 160 N-m and the rotor emf is absorbed to make 120 cycles/min. Calculate	7 M
	the net mechanical power developed .if the torque loss in windage and friction is	
	12N-m. Find the copper loss in the rotor windings, the input to the motor and	
	effciency. Stator losses=200W (inclusive of core loss).	
	b Explain the Torque-Slip characteristics of an 3-phase Induction motor	5M
	OR	
8	a Briefly explain about the procedure for circle diagram.	6M
	b Explain in detail about the no load test of 3-phase induction motor.	6M
	UNIT-V	
9	a Briefly explain the working of star delta starter with a neat diagram	6M
	b Explain the V/f control methods of the speed control of induction motor are	6M
	achieved from stator side.	

R16

Q.P. Code: 16EE215

- 10 a Explain how the speed of induction motor is controlled by injecting emf into the 6M rotor Circuit.
 - b A cascaded set consists of 2 motors 4-pole and 6-poles respectively. The Supply 6M frequency is 50 Hz, While the frequency in rotor circuit of 6 pole motor is 1Hz. Determine the slip of each machine and combined speed of the set.

*** END ***